29 research outputs found

    Novel digital impedance bridges for the realization of the farad from graphene quantum standards

    Get PDF
    In the International System of Units, a realization of the impedance units is the quantum Hall effect, a macroscopic quantum phenomenon that produces quantized resistance values. Established experiments employ individual GaAs devices [1], but research is ongoing on novel materials such as graphene, which allows the realization of the units with relaxed experimental conditions. Furthermore, novel digital impedance bridges allow the implementation of simple traceability chains. In the framework of the European EMPIR project 18SIB07 GIQS (Graphene Impedance Quantum Standards), an affordable and easy-to-operate impedance standard combining novel digital impedance bridges and graphene quantum standards has been developed. An onsite comparison of an electronic and a Josephson impedance bridges developed at INRIM (Istituto Nazionale di Ricerca Metrologica, Italy) and PTB (Physikalisch-Technische Bundesanstalt, Germany), respectively, were organized for their mutual validation and to assess their performance in the realization of the farad.Measurements of temperature-controlled impedance standards and of a graphene quantized Hall resistance standard in the AC regime were performed with both INRIM’s and PTB’s bridges. The result of the comparison and the last progresses of the GIQS project are here presented

    Next-generation crossover-free quantum Hall arrays with superconducting interconnections

    Get PDF
    This work presents precision measurements of quantized Hall array resistance devices using superconducting, crossover-free and multiple interconnections as well as graphene split contacts. These new techniques successfully eliminate the accumulation of internal resistances and leakage currents that typically occur at interconnections and crossing leads between interconnected devices. As a result, a scalable quantized Hall resistance array is obtained with a nominal value that is as precise and stable as that from single-element quantized Hall resistance standards

    PTB-INRIM comparison of novel digital impedance bridges with graphene impedance quantum standards

    Get PDF
    This paper describes an onsite comparison of two different digital impedance bridges when performing measurements on a quantum Hall resistance standard with the purpose of realizing the SI unit of capacitance, the farad. In the EMPIR Joint Research Project 18SIB07 GIQS, graphene impedance quantum standards, the Physikalisch-Technische Bundesanstalt (PTB), Germany, developed a Josephson impedance bridge, and the Istituto Nazionale di Ricerca Metrologica (INRIM) and the Politecnico di Torino (POLITO), Italy, developed an electronic digital impedance bridge. The former is based on Josephson waveform generators and the latter on an electronic waveform synthesizer. The INRIM–POLITO impedance bridge was moved to PTB and the two bridges were compared by measuring both temperature-controlled standards and a graphene AC quantized Hall resistance (QHR) standard. The uncertainties for the calibration of 10 nF capacitance standards at 1233 Hz are within 1 × 10−8 for the PTB's bridge and around 1 × 10−7 for the INRIM–POLITO's bridge. The comparison mutually validates the two bridges within the combined uncertainty. The result confirms that digital impedance bridges allow the realization of the SI farad from the QHR with uncertainties comparable with the best calibration capabilities of the BIPM and the major National Metrology Institutes

    Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC

    Get PDF
    We present a new fabrication method for epitaxial graphene on SiC which enables the growth of ultra-smooth defect- and bilayer-free graphene sheets with an unprecedented reproducibility, a necessary prerequisite for wafer-scale fabrication of high quality graphene-based electronic devices. The inherent but unfavorable formation of high SiC surface terrace steps during high temperature sublimation growth is suppressed by rapid formation of the graphene buffer layer which stabilizes the SiC surface. The enhanced nucleation is enforced by decomposition of polymer adsorbates which act as a carbon source. With most of the steps well below 0.75 nm pure monolayer graphene without bilayer inclusions is formed with lateral dimensions only limited by the size of the substrate. This makes the polymer assisted sublimation growth technique the most promising method for commercial wafer scale epitaxial graphene fabrication. The extraordinary electronic quality is evidenced by quantum resistance metrology at 4.2 K with until now unreached precision and high electron mobilities on mm scale devices.Comment: 20 pages, 6 Figure

    Two-Terminal and Multi-Terminal Designs for Next-Generation Quantized Hall Resistance Standards: Contact Material and Geometry

    Get PDF
    In this paper, we show that quantum Hall resistance measurements using two terminals may be as precise as four-terminal measurements when applying superconducting split contacts. The described sample designs eliminate resistance contributions of terminals and contacts such that the size and complexity of next-generation quantized Hall resistance devices can be significantly improved

    Accessing ratios of quantized resistances in graphene p–n junction devices using multiple terminals

    Get PDF
    The utilization of multiple current terminals on millimeter-scale graphene p–n junction devices has enabled the measurement of many atypical, fractional multiples of the quantized Hall resistance at the ν = 2 plateau (RH ≈ 12 906 Ω). These fractions take the form abRH and can be determined both analytically and by simulations. These experiments validate the use of either the LTspice circuit simulator or the analytical framework recently presented in similar work. Furthermore, the production of several devices with large-scale junctions substantiates the approach of using simple ultraviolet lithography to obtain junctions of sufficient sharpness.The utilization of multiple current terminals on millimeter-scale graphene p–n junction devices has enabled the measurement of many atypical, fractional multiples of the quantized Hall resistance at the ν = 2 plateau (RH ≈ 12 906 Ω). These fractions take the form abRH and can be determined both analytically and by simulations. These experiments validate the use of either the LTspice circuit simulator or the analytical framework recently presented in similar work. Furthermore, the production of several devices with large-scale junctions substantiates the approach of using simple ultraviolet lithography to obtain junctions of sufficient sharpness

    Nonconventional Quantized Hall Resistances Obtained with ν = 2 Equilibration in Epitaxial Graphene p-n Junctions

    Get PDF
    We have demonstrated the millimeter-scale fabrication of monolayer epitaxial graphene p−n junction devices using simple ultraviolet photolithography, thereby significantly reducing device processing time compared to that of electron beam lithography typically used for obtaining sharp junctions. This work presents measurements yielding nonconventional, fractional multiples of the typical quantized Hall resistance at ν=2 (RH≈12906Ω) that take the form: (a/b)RH. Here, a and b have been observed to take on values such 1, 2, 3, and 5 to form various coefficients of RH. Additionally, we provide a framework for exploring future device configurations using the LTspice circuit simulator as a guide to understand the abundance of available fractions one may be able to measure. These results support the potential for drastically simplifying device processing time and may be used for many other two-dimensional materials
    corecore